COMP 520 - Compilers

Lecture 20 — Virtual Methods, Polymorphism,
Bootstrapping, and a look into C#

Announcements

e Please do course evaluations!
* Final Exam is 5/9 at 4:00pm

* The exam is written to be taken in 90 minutes, but I’'m
going to give you the full 180 minutes should you
desire it.

COMP 520: Compilers —S. Ali

Final Exam

* |If you are in the situation of “3 exams in 24 hours”,
make sure you follow protocol and let the Dean’s
office know so that way we can get your exam
rescheduled.

* Once again: Final Exam is 5/9 at 4:00pm

COMP 520: Compilers —S. Ali

Bootstrapping

Bootstrapping is a topic of initialization. How does that relate to Compilers?

Bootstrapping

* Generally related to initializing hardware or software

* In compilers, bootstrapping is similar to what you have
been doing with mini Javal

* Consider new hardware with a new ISA “LEG.” You are
writing the compiler for it. Full Programming languages are
very complex, so does that mean you need to write all of
miniJava AND MORE entirely using LEG assembly code?

COMP 520: Compilers —S. Ali

Bootstrapping (2)

* |dea: Only target a small part of your programming
language.

* Then, when the compiler is done, compile a compiler
with the “easier to use” mini-Language.

* Add features that are missing in the mini-Language,
using an easier to read language!

COMP 520: Compilers —S. Ali

Tombstone Diagram (T diagram)
The T-shape is a “Translator”

Language compiler Language ocutput
accepts as input by compiler

Language compiler
1S written In

COMP 520: Compilers —S. Ali

Let’s create the “first” compiler!

COMP 520: Compilers —S. Ali

Goal: Create a compiler

* New architecture just dropped, it’s called LEG

* A more powerful version of ARM with some tradeoffs
in fine-grain instructions

* Our goal: Make a fully functional C compiler for LEG

COMP 520: Compilers —S. Ali

Making the first compiler for LEG

Language Output
Accepted Code

miniC LEG

LEG

l.e., Write a miniC compiler

: . in x86 for the x86 processor.
Compiler written

in this language

10
COMP 520: Compilers —S. Ali

Making the second compiler for LEG

Language Output Language Output
Accepted Code Accepted Code
miniC LEG Full C LEG
LEG miniC
Compiler written Compiler written
in this language in this language

11
COMP 520: Compilers —S. Ali

Compiler books really like these diagrams

Aclgelflti C Otté)g : What is this diagram saying?
Compiler

Language Accept: Output:

" miniC miniC LEG
Input Compiler Compiler
Code Language
/ LEG
Binary Machine

(LEG)

12
COMP 520: Compilers —S. Ali

Compiler books really like these diagrams

Accept: Output:
Full C LEG
Compiler
Language Accept: Output:
/ miniC miniC LEG

Input Compiler Compiler
Code Language
| LEG
Binary Machine
(LEG)

COMP 520: Compilers —S. Ali

What is this diagram saying?

It says:

| use a compiler painfully
written in LEG, which accepts
miniC, and use miniC to write
a compiler for Full C. Note: It is
easier to use miniC than LEG
assembly code (first compiler)

13

Third Compiler

Accept: Output: Accept: Output:
Full C LEG Full C LEG
Compiler Compiler
Language Accept: Output: |anguage
miniC miniC LEG LEG
Input Compiler Compiler
Code Language
Binary LEG

This is our goal, a compiler that can run on “LEG”
machines, but accepts the Full C language.
How can we create this?

COMP 520: Compilers —S. Ali

14

Completed Diagram:
How to go from miniC to Full C

Accept: Output: Accept: Output:
Full C LEG Full C LEG
Compiler 0 °°F > Compiler
Language Accept: Output: Language
miniC miniC LEG LEG
Compiler
Language
LEG Third compiler is generated

W by compiling the compiler!
(LEG)

15
COMP 520: Compilers —S. Ali

Because miniC < FullC

Accept: Output: Accept: Output:
Full C LEG Full C LEG

Compiler — Compiler
Language Language

m | nIC Use Full C to make code cleaner Fu ” C
e e

* Optionally, can also clean up miniC code to use Full C,
but the compiler functionality remains the same.

COMP 520: Compilers —S. Ali

Naming Compilers

Accept: Output: Accept: Output:
Full C LEG Full C LEG
Compiler EEERREY = Compiler
Language Language
(Full C LEG B
Portable Native
Compiler Compiler
(Source) (Binary)

17
COMP 520: Compilers —S. Ali

Next Goal: Retarget Output

* Consider: A new ISA extends LEG, it supports WIDE

sizes of operands and more flexibility, called KNEE-W,
or NEW for short.

* Goal: Retarget existing compiler for outputting to
NEW bytecode rather than the legacy LEG code.

18
COMP 520: Compilers —S. Ali

Next Goal: Retarget Output

* Goal: Retarget existing compiler for outputting to
NEW bytecode rather than the legacy LEG code.

* We want our compiler to run on NEW processors and

OUtlet NEW COde' Accept: Output:
Full C NEW

ompiler

We want this: fangsage

NEW

Machine
NEW
19

COMP 520: Compilers —S. Ali

Given a Portable and Native Compiler

Accept: Output:
Full C LEG
Compiler
Language Accept: Output:
FullC FullC LEG
Compiler
Language
LEG

Machine
(LEG)

20
COMP 520: Compilers —S. Ali

Rewrite your CodeGenerator

Accept: Output:
Full C NEW*
Compiler
Language Accept: Output:
FullC FullC LEG
Compiler
Language
LEG

Question: is there a way to Machine
make this step practical? \LE%

COMP 520: Compilers —S. Ali

Accept:
Full C
Compiler
Language
Full C

COMP 520: Compilers —S. Ali

Compile!

Output:

NEW

Accept:

Full C

Compiler

Language

LEG

Machine
(LEG)

Accept:

Full C

Output:

LEG

Output:

NEW

Compiler
Language

LEG

New Executable
Binary

22

Let’s use that binary we just made.
Same Portable Compiler on the left.

Accept: Output:
Full C NEW What happens now?
Compiler
Language Accept: Output:
Full C FullC NEW
Compiler
Language
LEG

Machine
(LEG)

COMP 520: Compilers —S. Ali

23

Compile!

Accept: Output: Accept: Output:
Full C NEW Full C NEW
Compiler Compiler
Language Accept: Output: Language
FullC FullC NEW NEW
Compiler
Language
LEG

Machine
(LEG)

COMP 520: Compilers —S. Ali

Target Achieved!

24

Portable compiler

* This is why the Green compiler is known as the
Portable Compiler.

Accept: Output:
Full C NEW

Compiler
Language

Full C

COMP 520: Compilers —S. Ali

25

T-Diagram Takeaways

* |f forced to write in assembly, make a mini-language

* With the mini-language compiler, create the
full-language compiler

* Update the mini-language compiler to be written in

full-language (Porta
* Easy to add on new

ole Compiler)

anguage semantics, and

somewhat easy to target new binary formats.

COMP 520: Compilers —S. Ali

26

Interpreters, Java, and a quick
look into C#

COMP 520: Compilers —S. Ali

Interpreters (Square Rectangle)

* Input is some language (often called a script)
* Input corresponds to operations in interpreter’s

anguage
/ Vien
This While interpreters can be slow, the

Python input code is easy to modify and debug.
Runtime

(x64) Note the simplicity of the diagram.

Machine Quick to get up and running,
(x64) and no slow slow compilation step!

is interpreted by

28
COMP 520: Compilers —S. Ali

)

—,

COMP 520: Compilers —S. Ali

Quick Overview

Input A is interpreted by language B

Input A is represented in language B

Input A is translated to language B
The translator is written in language C.

Machine
A

This machine
can execute the
language A

29

=)

«_

What if we interpreted miniJava?

* Instead of outputting bytecode, what if we
interpreted the input code and executed what
it instructs to do in our Java Program??

miniJava miniJava

Accept: Output:
Interpreter Java IVM Interpreter

It would look something like this: Bz oW

Compiler
Language

(Next slide details what is going on) VM

JVM Code

JVM Runtime
(x64)

Machine
COMP 520: Compilers —S. Ali

Input code Input code
miniJava miniJava
. . miniJava
miniJava
JavaC
Interpreter RalS==dS Output:
(Java) Java VM JVM .class
bytecode
Interpreter’s Compiler Interpreter’s
Langu-age .
Native compiled

.java Files

W .class Files

COMP 520: Compilers —S. Ali

What if we interpreted miniJava? (2)

Input code

miniJava

miniJava

JVM .class
Bytecode

JVM Code

JVM Runtime
(Native)

W

31

And what is regular Java?

Input code
(\ (Input)
put code / JVM Code
code JavaC (.class files)
Accept: Output: \ j
Java | Java M | VM JVM Code
\ , _Code /
Compiler
Langu-age JVM Runtime
Native (Native)

Java Runtime

Environment

Code gets represented
by .class JVM bytecode
rather than .java source files

32

COMP 520: Compilers —S. Ali

C# (.NET Core Framework)

nput code compiles to an intermediate language (IL)
L then compiles to native code at runtime

* Native code runs on target machine

C# Input Code — Intermediate — Native Code
Language

\ J
|

CH# Compiler

\ J
|

.NET Core JIT Compiler

COMP 520: Compilers —S. Ali

33

COMP 520: Compilers —S. Ali

C# .NET Core T-Diagram

’ ‘ (Input) [.NETIL)
Input
code
code
Accept: Output: .
ca | CH NETIL | -NET | NETIL Native | Native
N L _(User)

Compiler Compiler User’s
Language Language .
Developer’ User’s
Two-step process but instead of interpreted like JVM,
it gets compiled again and turned into native bytecode.

34

CH# Question

* If compiling is a lengthy and cumbersome process,
then having the user compile “Intermediate
Language” code into “Native Code” on their machine
means programs have a lengthy load time right?

* What are some ways around this?

COMP 520: Compilers —S. Ali

35

C# Question (2)

* If compiling is a lengthy and cumbersome process, then
having the user recompile “Intermediate Language” code
into “Native Code” on their machine means programs have
a lengthy load time right?

* Instead, this translator is a “Just-in-time” (JIT)

* JIT Compiler: A compiler where only parts are compiled,
and it compiles more and more code when needed.

36
COMP 520: Compilers —S. Ali

JIT Compilers — A middleground

* JIT Compiler: A compiler where only parts are compiled,
and it compiles more and more code when needed.

* Give up the efficiency of native code
* Cannot optimize dependent code segments compiled at different times.

e Often faster than an interpreter

* Sometimes slower than an interpreter (loading a new
chunk of IL code, then compiling it takes time)
* Why is “slow but only for a moment” a problem?

37
COMP 520: Compilers —S. Ali

JIT Compilers

* We will look at JIT compilation techniques on 4/30

* Main idea: compile the code during runtime, and let it
run with the efficiency of native machine code

38
COMP 520: Compilers —S. Ali

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

Polymorphism

Brainstorm Time: instanceof

* Recall from PA4: we map memory layouts where fields
are stored sequentially in memory.

*So if a class is just some bytes of storage for fields,
how can | tell if a class is an instanceof a class?

40
COMP 520: Compilers —S. Ali

RTTI: Runtime Type Information

* (Sometimes called Runtime Type Identification)

 Special data structure that resolves
“object type cl is an instanceof c2 c3 c4”

* Instanceof operation then uses this special table to resolve
if LHS instanceof RHS, and returns T/F

* Additionally, each class object now needs to keep track of
“I am of type c1”

 How?

41
COMP 520: Compilers —S. Ali

Hint: Array.length, String.length

* (Similar PA5 extra credit opportunity)
* What if we ADD A FIELD to this object called “.length”?

e String is immutable: meaning calculate the hidden .length
whenever the variable is set.

* Alternatively, if your implementation is not immutable,
update .length field whenever you AssignStmt the String.

42
COMP 520: Compilers —S. Ali

Example: Array

e

objBase+0 objBase+8 objBase+16 objBase+24

(Assumption: 8 byte elements)

ldea: when you visit ixExpr for getting array values, just add +1.
Additionally, resolve “ArrayType.length” with that object base +0.

43
COMP 520: Compilers —S. Ali

)

=

Example: String

S e | n | o | oun |

objBase+0 objBase+8 objBase+16 objBase+l7 o0bjBase+18

Mutable idea: Allocate new memory if the new .length will be
more than the .maxSize (4kb). Otherwise, just write the chars!
New allocated memory could be a multiple of 4kb.

Immutable: no need for a .maxSize hidden field.

44
COMP 520: Compilers —S. Ali

)

=

Example: Objects

objBase+0 objBase+8 objBase+16 objBase+24

(Assumption: 8 byte fields)

b MyClassName\0

Because object names are variable-length, we can just store
a pointer to somewhere in the heap for this object’s RTTI name.

45
COMP 520: Compilers —S. Ali

Polymorphism

e Consider three classes, A, B, C, and each contain
three ints, x, y, z.

* Consider a fourth class, D, and it inherits all A, B, C.

Ficlass D : public A, public B, public C {
public:

int w;

}.

COMP 520: Compilers —S. Ali

46

)

—,

Polymorphism — Memory Layout

* The internal format of D is quite simple!

47
COMP 520: Compilers —S. Ali

)

=

Polymorphism — Member Access

e Unfortunately, difficult to resolve variables with the same

identifier.
A B C
X y Z X Yy Z X Y Z Y

+0 +4 +8 +12 +16 +20 +24 +28 +32 +36
Consider:
D¥ d = new D();
d—>x; // IDError, which “x~ 9%

48
COMP 520: Compilers —S. Ali

)

=

Polymorphism — Member Access

* Only way to access variables is by expanding Type-Casting!

A B C
X Yy 4 X Yy 4 X Y 4 W
+0 +4 +8 +12 +16 +20 +24 +28 +32 +36
Consider:
Dk d = new DQ) ;
Bx b = (B%)d;

b->x = 1;// Not an error!

COMP 520: Compilers —S. Ali

49

ﬁ +0 +4 +8 ﬁ+12 +16 +20 +24 +28 +32 +36

e Operation:b := (B%)d;
* Typecast from D to B = Find where “B” starts in “D”
Thus:“b := (B¥)d;” = “b := (size_t)d + 12;”

50
COMP 520: Compilers —S. Ali

New Typecast Table Entry!

* Table inputs:

* Original type

* Destination type
* Table outputs:

* Destination type (if entry exists, then typecast is allowed)
* Memory offset (when dealing with polymorphism)

* This is why typecasting tables are very effective when
compared to earlier simplified examples.

COMP 520: Compilers —S. Ali

51

Virtual Methods

COMP 520: Compilers —S. Ali

Virtual Method

e A virtual method is a method whose location is not
known at compile-time.

* Why? Consider AST’s visit method.

*If Il visit a generic AST, | do not know what the
concrete class is or which method body to invoke.

*The visit method is a virtual method that is resolved
elsewhere and known at runtime.

53
COMP 520: Compilers —S. Ali

Consider:

* What is the output?

void main() {
A* a = new AQ);
Bx b = new B();
Cx ¢ = new C();

a—>f();
b—>f();
c—>f();

b = (Bx)c;
b—>£();

a = (Ax)c;
a—>f();

COMP 520: Compilers —S. Ali

Consider:

* What is the output?

* Qutput is: ABCCC (with line breaks)

void main() {
A* a = new AQ);
Bx b = new B();
Cx ¢ = new C();

a—>f();
b—>f();
c—>f();

b = (Bx)c;
b—>£();

a = (Ax)c;
a—>f();

COMP 520: Compilers —S. Ali

Virtual Methods are Fields

A

L

* Memory Layout:

() { printf("A\n");

W f X y
objBase+0 +4 +12 +16

Question: In x64, why is the size of the field “f” 8 bytes long?

COMP 520: Compilers —S. Ali

}

56

)

=

Virtual Method Call

* Load field “f”
 Call whatever memory address it points to

W f X y
objBase+0 +4 +12 +16

*mov rsi, objectA
mov rax, |rsi+4]
ecall rax

COMP 520: Compilers —S. Ali

57

=

Virtual Methods (Visualization)

Method A.fn

data
E.g. If the object was

instantiated as

COMP 520: Compilers —S. Ali

Method B.fn

58

=

Virtual Methods (Visualization)

Method A.fn

data
E.g. If the object was

instantiated as

COMP 520: Compilers —S. Ali

Method B.fn

59

To wrap up virtual methods

* When an object A is allocated, field “f” is filled with
the memory address of A.f

* When an object B (extends A) is allocated, field “f” is
filled with the memory address of B.f (assuming B
defines a method f)

* Combine this with polymorphism and type-casting,
and you now can compile OO languages

60
COMP 520: Compilers —S. Ali

Have a great weekend!

* Next week Tuesday is the LDOC
* Modern Compilers use LLVM
e LLVM, JIT strategies (Emulators are related), and wrap-up

* Please knock out PAS5 earlier rather than later.
e Please finish WAS

COMP 520: Compilers —S. Ali

61

End

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

	Slide 1: COMP 520 - Compilers
	Slide 2: Announcements
	Slide 3: Final Exam
	Slide 4: Bootstrapping
	Slide 5: Bootstrapping
	Slide 6: Bootstrapping (2)
	Slide 7: Tombstone Diagram (T diagram) The T-shape is a “Translator”
	Slide 8: Let’s create the “first” compiler!
	Slide 9: Goal: Create a compiler
	Slide 10: Making the first compiler for LEG
	Slide 11: Making the second compiler for LEG
	Slide 12: Compiler books really like these diagrams
	Slide 13: Compiler books really like these diagrams
	Slide 14: Third Compiler
	Slide 15: Completed Diagram: How to go from miniC to Full C
	Slide 16: Because miniC subset of FullC
	Slide 17: Naming Compilers
	Slide 18: Next Goal: Retarget Output
	Slide 19: Next Goal: Retarget Output
	Slide 20: Given a Portable and Native Compiler
	Slide 21: Rewrite your CodeGenerator
	Slide 22: Compile!
	Slide 23: Let’s use that binary we just made. Same Portable Compiler on the left.
	Slide 24: Compile!
	Slide 25: Portable compiler
	Slide 26: T-Diagram Takeaways
	Slide 27: Interpreters, Java, and a quick look into C#
	Slide 28: Interpreters (Square Rectangle)
	Slide 29: Quick Overview
	Slide 30: What if we interpreted miniJava?
	Slide 31: What if we interpreted miniJava? (2)
	Slide 32: And what is regular Java?
	Slide 33: C# (.NET Core Framework)
	Slide 34: C# .NET Core T-Diagram
	Slide 35: C# Question
	Slide 36: C# Question (2)
	Slide 37: JIT Compilers – A middleground
	Slide 38: JIT Compilers
	Slide 39: Polymorphism
	Slide 40: Brainstorm Time: instanceof
	Slide 41: RTTI: Runtime Type Information
	Slide 42: Hint: Array.length, String.length
	Slide 43: Example: Array
	Slide 44: Example: String
	Slide 45: Example: Objects
	Slide 46: Polymorphism
	Slide 47: Polymorphism – Memory Layout
	Slide 48: Polymorphism – Member Access
	Slide 49: Polymorphism – Member Access
	Slide 50: Polymorphism typecasting
	Slide 51: New Typecast Table Entry!
	Slide 52: Virtual Methods
	Slide 53: Virtual Method
	Slide 54: Consider:
	Slide 55: Consider:
	Slide 56: Virtual Methods are Fields
	Slide 57: Virtual Method Call
	Slide 58: Virtual Methods (Visualization)
	Slide 59: Virtual Methods (Visualization)
	Slide 60: To wrap up virtual methods
	Slide 61: Have a great weekend!
	Slide 62: End
	Slide 63
	Slide 64
	Slide 65
	Slide 66

