
COMP 520 - Compilers

Lecture 20 – Virtual Methods, Polymorphism, 
Bootstrapping, and a look into C#
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Announcements

•Please do course evaluations!

• Final Exam is 5/9 at 4:00pm

• The exam is written to be taken in 90 minutes, but I’m 
going to give you the full 180 minutes should you 
desire it.
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Final Exam

• If you are in the situation of “3 exams in 24 hours”, 
make sure you follow protocol and let the Dean’s 
office know so that way we can get your exam 
rescheduled.

•Once again: Final Exam is 5/9 at 4:00pm
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Bootstrapping
Bootstrapping is a topic of initialization. How does that relate to Compilers?
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Bootstrapping

• Generally related to initializing hardware or software

• In compilers, bootstrapping is similar to what you have 
been doing with miniJava!

• Consider new hardware with a new ISA “LEG.” You are 
writing the compiler for it. Full Programming languages are 
very complex, so does that mean you need to write all of 
miniJava AND MORE entirely using LEG assembly code?
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Bootstrapping (2)

• Idea: Only target a small part of your programming 
language.

• Then, when the compiler is done, compile a compiler 
with the “easier to use” mini-Language.

•Add features that are missing in the mini-Language, 
using an easier to read language!
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Tombstone Diagram (T diagram)
The T-shape is a “Translator”
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Let’s create the “first” compiler!
Arguable usage of the word ‘first’
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Goal: Create a compiler

•New architecture just dropped, it’s called LEG

•A more powerful version of ARM with some tradeoffs 
in fine-grain instructions

•Our goal: Make a fully functional C compiler for LEG
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Making the first compiler for LEG

10
COMP 520: Compilers – S. Ali

miniC               LEG

LEG

Language
Accepted

Output
Code

Compiler written
in this language

I.e., Write a miniC compiler
in x86 for the x86 processor.



Making the second compiler for LEG
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miniC               LEG

LEG

Language
Accepted

Output
Code

Compiler written
in this language

Full C                LEG

miniC

Language
Accepted

Output
Code

Compiler written
in this language



Compiler books really like these diagrams
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miniC               LEG

LEG

Accept: Output:

Compiler
Language

Full C               LEG

miniC

Accept: Output:

Compiler
Language

Input Compiler
             Code

    Binary Machine
(LEG)

What is this diagram saying?



Compiler books really like these diagrams
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miniC               LEG

LEG

Accept: Output:

Compiler
Language

Full C               LEG

miniC

Accept: Output:

Compiler
Language

Input Compiler
             Code

   Binary Machine
(LEG)

What is this diagram saying?

It says:
   I use a compiler painfully
written in LEG, which accepts
miniC, and use miniC to write
a compiler for Full C. Note: It is
easier to use miniC than LEG
assembly code (first compiler)



Third Compiler
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miniC               LEG

LEG

Accept: Output:

Compiler
Language

Full C               LEG

miniC

Accept: Output:

Compiler
Language

Full C                LEG

LEG

Accept: Output:

Compiler
Language

This is our goal, a compiler that can run on “LEG”
machines, but accepts the Full C language.
    How can we create this?

Input Compiler
             Code
    Binary



Completed Diagram:
How to go from miniC to Full C

15
COMP 520: Compilers – S. Ali

miniC               LEG

LEG

Accept: Output:

Compiler
Language

Full C               LEG

miniC

Accept: Output:

Compiler
Language

Full C                LEG

LEG

Accept: Output:

Compiler
Language

Third compiler is generated
by compiling the compiler!Machine

(LEG)



Because miniC ⊂ FullC
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Full C               LEG

miniC

Accept: Output:

Compiler
Language

Full C               LEG

Full C

Accept: Output:

Compiler
Language

≡

•Optionally, can also clean up miniC code to use Full C, 
but the compiler functionality remains the same.

Use Full C to make code cleaner



Naming Compilers
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Full C               LEG

Full C

Accept: Output:

Compiler
Language

Full C                LEG

LEG

Accept: Output:

Compiler
Language

Portable
Compiler
(Source)

Native
Compiler
(Binary)



Next Goal: Retarget Output

•Consider: A new ISA extends LEG, it supports WIDE 
sizes of operands and more flexibility, called KNEE-W, 
or NEW for short.

•Goal: Retarget existing compiler for outputting to 
NEW bytecode rather than the legacy LEG code.
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Next Goal: Retarget Output

•Goal: Retarget existing compiler for outputting to 
NEW bytecode rather than the legacy LEG code.

•We want our compiler to run on NEW processors and 
output NEW code.

   We want this:
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Full C             NEW

NEW

Accept: Output:

Compiler
Language

Machine
(NEW)



Given a Portable and Native Compiler
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Full C               LEG

Full C

Accept: Output:

Compiler
Language

Full C                LEG

LEG

Accept: Output:

Compiler
Language

Machine
(LEG)



Rewrite your CodeGenerator
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Full C                LEG

LEG

Accept: Output:

Compiler
Language

Machine
(LEG)

Full C             NEW*

Full C

Accept: Output:

Compiler
Language

Question: is there a way to
make this step practical?



Compile!
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Full C                LEG

LEG

Accept: Output:

Compiler
Language

Machine
(LEG)

Full C             NEW

Full C

Accept: Output:

Compiler
Language

Full C               NEW

LEG

Accept: Output:

Compiler
Language

New Executable
Binary



Let’s use that binary we just made.
Same Portable Compiler on the left.
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Full C             NEW

Full C

Accept: Output:

Compiler
Language

Full C               NEW

LEG

Accept: Output:

Compiler
Language

What happens now?

Machine
(LEG)



Compile!
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Full C             NEW

Full C

Accept: Output:

Compiler
Language

Full C               NEW

LEG

Accept: Output:

Compiler
Language

Target Achieved!

Machine
(LEG)

Full C             NEW

NEW

Accept: Output:

Compiler
Language



Portable compiler

• This is why the Green compiler is known as the 
Portable Compiler.
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Full C             NEW

Full C

Accept: Output:

Compiler
Language



T-Diagram Takeaways

• If forced to write in assembly, make a mini-language

•With the mini-language compiler, create the 
full-language compiler

•Update the mini-language compiler to be written in 
full-language (Portable Compiler)

• Easy to add on new language semantics, and 
somewhat easy to target new binary formats.
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Interpreters, Java, and a quick 
look into C#
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Interpreters (Square Rectangle)

• Input is some language (often called a script)

• Input corresponds to operations in interpreter’s 
language
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Python

Python 
Runtime

(x64)

Machine
(x64)

While interpreters can be slow, the
input code is easy to modify and debug.

Note the simplicity of the diagram.

Quick to get up and running,
and no slow slow compilation step!

This
is interpreted by



Quick Overview
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A

B

A

B

A                         B

C

Input A is interpreted by language B

Input A is represented in language B

Input A is translated to language B
   The translator is written in language C.

Machine
A

This machine 
can execute the 

language A



What if we interpreted miniJava?
• Instead of outputting bytecode, what if we

interpreted the input code and executed what
it instructs to do in our Java Program?

It would look something like this:

(Next slide details what is going on)
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miniJava

Interpreter
(Java)

Machine
(x64)

JVM Code

JVM Runtime 
(x64)

Java                 JVM

JVM

Accept: Output:

Compiler
Language

miniJava

Interpreter
(JVM)



Input code

miniJava

What if we interpreted miniJava? (2)
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miniJava

Interpreter
(Java)

Machine

JVM Code

JVM Runtime 
(Native)

Java                JVM

Native

Accept: Output:

Compiler
Language

miniJava

JVM .class 
bytecode

Interpreter’s
.java Files

Interpreter’s
compiled

.class Files

JavaC

Machine

miniJava

JVM .class 
Bytecode

Input code

miniJava

Input code

miniJava



And what is regular Java?
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Machine

JVM Code

JVM Runtime 
(Native)

Java                JVM

Native

Accept: Output:

Compiler
Language

JavaC

Machine

Input 
code

Java

Input 
code

JVM
Code

Input code

JVM Code
(.class files)

Code gets represented
by .class JVM bytecode

rather than .java source files

Java Runtime
Environment



C# (.NET Core Framework)

• Input code compiles to an intermediate language (IL)

• IL then compiles to native code at runtime

•Native code runs on target machine
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C# Input Code
Intermediate 

Language
Native Code

C# Compiler

.NET Core JIT Compiler



C# .NET Core T-Diagram
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C#                .NET IL
Accept: Output:

Compiler
Language

…
Developer’s

Machine

Input 
code

C#

Input 
code

.NET 
IL

.NET IL         Native

…

User’s
Machine

.NET IL

Native 
(User)
User’s

Machine

Two-step process but instead of interpreted like JVM,
it gets compiled again and turned into native bytecode.

Compiler
Language



C# Question

• If compiling is a lengthy and cumbersome process, 
then having the user compile “Intermediate 
Language” code into “Native Code” on their machine 
means programs have a lengthy load time right?

•What are some ways around this?
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C# Question (2)

• If compiling is a lengthy and cumbersome process, then 
having the user recompile “Intermediate Language” code 
into “Native Code” on their machine means programs have 
a lengthy load time right?

• Instead, this translator is a “Just-in-time” (JIT)

• JIT Compiler: A compiler where only parts are compiled, 
and it compiles more and more code when needed.
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JIT Compilers – A middleground

• JIT Compiler: A compiler where only parts are compiled, 
and it compiles more and more code when needed.

• Give up the efficiency of native code
• Cannot optimize dependent code segments compiled at different times.

• Often faster than an interpreter

• Sometimes slower than an interpreter (loading a new 
chunk of IL code, then compiling it takes time)
• Why is “slow but only for a moment” a problem?
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JIT Compilers

•We will look at JIT compilation techniques on 4/30

•Main idea: compile the code during runtime, and let it 
run with the efficiency of native machine code
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Polymorphism
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Brainstorm Time: instanceof

•Recall from PA4: we map memory layouts where fields 
are stored sequentially in memory.

• So if a class is just some bytes of storage for fields, 
how can I tell if a class is an instanceof a class?
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RTTI: Runtime Type Information

• (Sometimes called Runtime Type Identification)

• Special data structure that resolves
 “object type c1 is an instanceof c2 c3 c4”

• Instanceof operation then uses this special table to resolve 
if LHS instanceof RHS, and returns T/F

• Additionally, each class object now needs to keep track of 
“I am of type c1”
• How?
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Hint: Array.length, String.length

• (Similar PA5 extra credit opportunity)

• What if we ADD A FIELD to this object called “.length”?

• String is immutable: meaning calculate the hidden .length 
whenever the variable is set.

• Alternatively, if your implementation is not immutable, 
update .length field whenever you AssignStmt the String.
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Example: Array

.length arr[0] arr[1] arr[2] …

objBase+0 objBase+8 objBase+16 objBase+24 …
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Idea: when you visit ixExpr for getting array values, just add +1.
Additionally, resolve “ArrayType.length” with that object base +0.

(Assumption: 8 byte elements)



Example: String

.length .maxSize char[0] char[1] char[2] …

objBase+0 objBase+8 objBase+16 objBase+17 objBase+18 …
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Mutable idea: Allocate new memory if the new .length will be
more than the .maxSize (4kb). Otherwise, just write the chars!
 New allocated memory could be a multiple of 4kb.

Immutable: no need for a .maxSize hidden field.



Example: Objects

.RTTIName Field: x Field: y Field: z …

objBase+0 objBase+8 objBase+16 objBase+24 …
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Because object names are variable-length, we can just store
a pointer to somewhere in the heap for this object’s RTTI name.

MyClassName\0
(Assumption: 8 byte fields)



Polymorphism

•Consider three classes, A, B, C, and each contain
three ints, x, y, z.

•Consider a fourth class, D, and it inherits all A, B, C.
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Polymorphism – Memory Layout

• The internal format of D is quite simple!
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D

A B C

x y z x y z x y z w

+0 +4 +8 +12 +16 +20 +24 +28 +32 +36



Polymorphism – Member Access
• Unfortunately, difficult to resolve variables with the same 

identifier.

Consider:
 D* d = new D();
 d->x; // IDError, which “x”??
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D

A B C

x y z x y z x y z w

+0 +4 +8 +12 +16 +20 +24 +28 +32 +36



Polymorphism – Member Access
• Only way to access variables is by expanding Type-Casting!

Consider:
 D* d = new D();
 B* b = (B*)d;
 b->x = 1; // Not an error!
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D

A B C

x y z x y z x y z w

+0 +4 +8 +12 +16 +20 +24 +28 +32 +36



Polymorphism typecasting

•Operation: b := (B*)d;

• Typecast from D to B ≡ Find where “B” starts in “D”

Thus: “b := (B*)d;”   ≡   “b := (size_t)d + 12;”
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D

A B C

x y z x y z x y z w

+0 +4 +8 +12 +16 +20 +24 +28 +32 +36

D B



New Typecast Table Entry!

• Table inputs:
• Original type
• Destination type

• Table outputs:
• Destination type (if entry exists, then typecast is allowed)
• Memory offset (when dealing with polymorphism)

• This is why typecasting tables are very effective when 
compared to earlier simplified examples.
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Virtual Methods
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Virtual Method

•A virtual method is a method whose location is not 
known at compile-time.

•Why? Consider AST’s visit method.
• If I visit a generic AST, I do not know what the 

concrete class is or which method body to invoke.
• The visit method is a virtual method that is resolved 

elsewhere and known at runtime.
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Consider:

•What is the output?
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Consider:

•What is the output?

•Output is: ABCCC (with line breaks)
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Virtual Methods are Fields

•Memory Layout:

56
COMP 520: Compilers – S. Ali

A

w f x y

objBase+0 +4 +12 +16

Question: In x64, why is the size of the field “f” 8 bytes long?



Virtual Method Call

• Load field “f”

• Call whatever memory address it points to

• mov rsi, objectA

• mov rax,[rsi+4]

• call rax
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A

w f x y

objBase+0 +4 +12 +16



Virtual Methods (Visualization)
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Method A.fn

Method B.fn

A

w f x y

+0 +4 +12 +16

Read this 
data

E.g. If the object was

instantiated as new B()



Virtual Methods (Visualization)
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Method A.fn

Method B.fn

A

w f x y

+0 +4 +12 +16

Read this 
data

E.g. If the object was

instantiated as new A()



To wrap up virtual methods

•When an object A is allocated, field “f” is filled with 
the memory address of A.f
•When an object B (extends A) is allocated, field “f” is 

filled with the memory address of B.f (assuming B 
defines a method f)

•Combine this with polymorphism and type-casting, 
and you now can compile OO languages
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Have a great weekend!

•Next week Tuesday is the LDOC
• Modern Compilers use LLVM
• LLVM, JIT strategies (Emulators are related), and wrap-up

•Please knock out PA5 earlier rather than later.

•Please finish WA5

61
COMP 520: Compilers – S. Ali



End
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